Regularity of shape optimizers for some spectral fractional problems

نویسندگان

چکیده

This paper is dedicated to the spectral optimization problem $$ \mathrm{min}\left\{\lambda_1^s(\Omega)+\cdots+\lambda_m^s(\Omega) + \Lambda \mathcal{L}_n(\Omega)\colon \Omega\subset D \mbox{ s-quasi-open}\right\} where $\Lambda>0, D\subset \mathbb{R}^n$ a bounded open set and $\lambda_i^s(\Omega)$ $i$-th eigenvalues of fractional Laplacian on $\Omega$ with Dirichlet boundary condition $\mathbb{R}^n\setminus \Omega$. We first prove that $m$ eigenfunctions an optimal are locally H\"{o}lder continuous in class $C^{0,s}$ and, as consequence, sets sets. Then, via blow-up analysis based Weiss type monotonicity formula, we topological minimizer composed relatively regular part closed singular Hausdorff dimension at most $n-n^*$, for some $n^*\geq 3$. Finally use viscosity approach $C^{1,\alpha}$-regularity boundary.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre spectral-collocation method for solving some types of fractional optimal control problems

In this paper, the Legendre spectral-collocation method was applied to obtain approximate solutions for some types of fractional optimal control problems (FOCPs). The fractional derivative was described in the Caputo sense. Two different approaches were presented, in the first approach, necessary optimality conditions in terms of the associated Hamiltonian were approximated. In the second appro...

متن کامل

Shape flows for spectral optimization problems

We consider a general formulation of gradient flow evolution for problems whose natural framework is the one of metric spaces. The applications we deal with are concerned with the evolution of capacitary measures with respect to the γ-convergence dissipation distance and with the evolution of domains in spectral optimization problems. AMS Subject Classification (2010): 49Q10, 49Q20, 58J30, 53C44.

متن کامل

Some Problems of Spectral Theory

Also compact operators of scalar type in any Banach can be so expressed, provided, the sum (1) is allowed to be countably infinite. It is perhaps less often noted that any operator of scalar type can be expressed in the form (1), with the index j running over all positive integers. But, in general, the projections P. cannot be chosen pair-wise J disjoint, that is, the product of any distinct pa...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2021.109271